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A B S T R A C T

Vibration fatigue by spectral methods relates the theory of structural dynamics to high-cycle vi-
bration fatigue. An ideal spectral method should perform well and consistently, regardless of the
response spectrum and the material being analyzed. The primary aim of this review is to develop
a common theoretical and open-source-code framework for a side-by-side comparison of more
than 20 spectral methods, which will help a future spectral-domain vibration-fatigue research.
The reviewed spectral methods are structured in terms of the damage-estimation concept:
narrowband approximation, narrowband correction factor (Wirsching–Light, Ortiz–Chen, 𝛼0.75,
Tovo–Benasciutti (two versions)), rainflow probability-density-function approximation (Dirlik,
Zhao–Baker, Park, Jun–Park) and combined fatigue damage, where the damage is combined
according to the cycle types (Jiao–Moan, Sakai–Okamura, Fu–Cebon, modified Fu–Cebon, Low’s
bimodal, Low 2014, Gao–Moan) and the narrowband damage combination criterion (Lotsberg,
Huang–Moan, single moment, bands method). All the reviewed methods are implemented in the
supporting open-source Python package FLife, with the comparison being fully reproducible
using the package documentation. The accuracy of the spectral methods is investigated in
terms of a time-domain rainflow analysis, where three different materials are considered: steel,
aluminium and spring steel. The comparison is based on typical PSD defined signals, with the
focus on: spectral width, background noise, close modes, number of modes and typical vibration
profiles used in accelerated automotive tests. In addition, a bimodal spectrum is formulated to
examine a specific group of spectral methods that are developed for bimodal random processes.
This research shows that other methods, besides the well-established ones, such as the Dirlik
and Tovo-Benasciutti methods, should be considered when the fatigue load is broadband: Ortiz–
Chen, 𝛼0.75, Park, Jun–Park and Huang–Moan methods. Furthermore, as the fatigue analysis of
bimodal random processes has become well established, the applicability of bimodal methods is
inspected. Among the reviewed spectral methods, Low’s bimodal and Low 2014 method show
exceptional accuracy that can be attained using the bimodal formulation.

. Introduction

Vibration fatigue using spectral methods relates the theory of structural dynamics to damage estimation in the frequency
omain [1]. Random fatigue loads (e.g., due to irregularities in the road or due to waves at sea) can be viewed as the realization
f a stationary Gaussian process, represented by the power spectral density (PSD) [2]. The classical approach to fatigue loading
s in the time domain, where the fatigue estimation typically starts by identifying the damage cycles with the rainflow-counting
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Fig. 1. Reviewed spectral methods.

algorithm [3–5]. Once these cycles are identified, the fatigue damage is aggregated according to the hypothesis of linear damage
accumulation, which was independently described by Palmgren [6] and Miner [7]. Since damage accumulation model greatly affects
the fatigue-life estimate, many other deterministic models, such as bilinear [8,9] and trilinear rules or sigmoidal curves [10,11]
are often applied to accommodate for material characteristics. A comparative review of time- and frequency-domain methods for
fatigue damage assessment is given by Muñiz-Calvente et al. [12]. However, the combination of rainflow counting and the Palmgren–
Miner rule has been tried and tested and is generally accepted as a reference to check the accuracy of frequency-domain spectral
methods [13–15].

Frequency-domain vibration-fatigue by spectral methods extends the theory of structural dynamics [1] and not only significantly
speeds-up the numerical evaluation of large models (e.g., due to modal decomposition [16,17]), but also offers to relate the dynamic
loads to the well-established theory of random processes [2,5]. In the structural dynamics theory, the excitation is related to
the response via the frequency response functions [18]. In recent years the excitation was significantly researched for multi-axis
excitation [19,20], while the excitation and response have been significantly researched for non-Gaussianity [21] or/and non-
stationarity [22,23]. At the response, a special attention is required for multiaxial loads [24,25]; for multiaxial loads the state
of the art approach is to use an uniaxial equivalent approach [26]. Since numerous engineering applications are neither Gaussian
nor stationary, a lot of effort was put into applying the spectral methods to non-Gaussian [27–29], non-stationary [30–32] and
sine-on-random environment [33–35]. This research is focused on the uni-axial fatigue damage in the frequency-domain, where a
zero-mean stationary Gaussian random process is assumed.

However, only for the narrowband Gaussian process can the fatigue damage be theoretically estimated with the Rayleigh stress
range distribution [36,37]. For a general broadband process, the correlation between the distribution of rainflow cycles and the
spectral density is so complex that the theoretical framework behind the frequency-domain fatigue analysis has no theoretically
exact solution [38].

If the narrowband fatigue damage model were to be applied to broadband processes, conservative predictions of the damage
with respect to the rainflow-counting scheme would be obtained [39]. Consequently, for broadband Gaussian random processes,
numerous spectral methods have been researched (theoretically and empirically). In this review the broadband spectral methods are
structured according to the fatigue-damage estimation concept, as shown in Fig. 1: (a) narrowband correction factor, (b) rainflow
probability density function (PDF) approximation, (c) combined fatigue damage - cycle type damage combination and (d) combined
fatigue damage - narrowband damage combination.

Narrowband correction factor. A correction factor for the narrowband fatigue-damage model expands its applicability to broadband
processes. Several spectral methods have been devised according to this concept (Fig. 1, (a)). Wirsching and Light [40] empirically
determined a correction factor based on the spectral width and the material used. Ortiz and Chen [41] introduced a generalized
2
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Fig. 2. Bimodal random process; (a) PSD, (b) time history illustrating the small- and large-amplitude cycles.

pectral bandwidth parameter, which also depends on the material’s S-N curve. A simple yet effective method was proposed
y Tovo and Benasciutti [42], which depends only on the 𝛼0.75 bandwidth parameter. Another spectral method by Tovo and
enasciutti [14,43] is based on a combination of the upper and lower damage intensity limits, with two correction factors defined.
his method also supports the rainflow PDF approximation.

ainflow PDF approximation. Among the spectral methods that approximate the rainflow stress cycle PDF on the basis of PSD (Fig. 1,
b)) and then continue towards damage identification, the pioneering work was performed by Dirlik [44]. Dirlik modeled the
ainflow PDF by combining one exponential and two Rayleigh probability densities. Several other methods have been proposed.
he Zhao and Baker [45] method gives the rainflow PDF in the form of a linear combination of the Weibull and Rayleigh PDF. Park
t al. [46] presented a method where they approximate the rainflow PDF with a combination of Rayleigh, a standard Rayleigh and
half-Gaussian distribution. Similarly, the spectral method of Jun and Park [47] approximates the rainflow PDF with a Rayleigh, a

tandard Rayleigh, a half-Gaussian and an additional exponential distribution.

ombined fatigue damage - cycle type damage combination. Special cases of broadband random processes are the multimodal processes,
hose spectral density is formed by the superposition of two or more well separated narrowband contributions. By analyzing these
rocesses in the time domain, clearly distinguishable classes of stress cycles can be observed, e.g., for bimodal processes a small-
mplitude and large-amplitude, as shown in Fig. 2(b). Spectral methods in the cycle type damage combination group (Fig. 1, (c))
stimate damage for each cycle type independently. By summing the damage contributions of all cycle categories the combined
atigue damage is obtained. A pioneering work by Jiao and Moan [48] on bimodal fatigue analysis considers small-amplitude cycles
eing attributed entirely to the high-frequency component, whereas large-amplitude cycles are associated with both low- and high-
requency components. In the last period we have seen generalizations to multi-modal loads. Here, the following bimodal spectral
ethods will be reviewed: Jiao-Moan [48], Sakai-Okamura [49], Fu-Cebon [50], modified Fu-Cebon [51], Low’s bimodal [52] and

ow-2014 [53]. Additionally, the trimodal method by Gao and Moan [54], which can be generalized for a general broadband random
rocess, will also be reviewed.

ombined fatigue damage - narrowband damage combination. Provided that the broadband stress spectrum is decomposed into a
et of narrowband spectral contributions, fatigue damage can be calculated for each infinitesimal sub-band using the narrowband
pproximation. Such approach (Fig. 1, (d)) is convenient for practical applications because the combined fatigue damage is expressed
s an explicit form of individual narrowband damage contributions. As the relation of the stress and fatigue damage is nonlinear, the
ombined fatigue damage is not simply the sum of individual damages and a suitable combination rule should be employed [55,56].
his research will review the following spectral methods from the narrowband damage-combination category: Lotsberg [57], Huang-
oan [58], single-moment method [59,60] and bands method [61]. Lotsberg and Huang-Moan spectral methods were devised for

imodal random process. As for a general broadband random process, the single-moment method by Lutes and Larsen [59,60] is
ssentially a spectral decomposition method, where the quadratic amplitude sum of the ‘‘Projection-by-Projection’’ (PbP) multiaxial
ibration fatigue criterion [62] is employed as a damage-combination rule. In contrast to the empirical single-moment method,
raccesi et al. [61] presented the bands method, which was derived theoretically, although the damage-combination rule used is
quivalent to a quadratic amplitude sum of the PbP criterion [63]. Another reviewed fatigue-damage method that employs the PbP
riterion was proposed by the Han and Ma [64], with applicability to bimodal random processes.

Since the spectral methods were developed with respect to particular spectra, they should be assessed as to whether they give
eliable fatigue-damage predictions for the various response spectra to which they might be applied. Many comparison studies of
pectral methods are available in literature. Benasciutti and Tovo [65] compared several spectral methods for the fatigue analysis of
broadband Gaussian random process, i.e., the narrowband formulation [36], Wirsching–Light [40], Dirlik [44], Zhao–Baker [45],
3

ovo-Benasciutti [14,43] and 𝛼0.75 [42], and concluded that the Tovo–Benasciutti method matches the accuracy of the Dirlik method
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in terms of numerically simulated power spectral densities. According to Mršnik et al. [15], who in addition to methods compared
by Benasciutti and Tovo also investigated the accuracy of the Petrucci–Zuccarello [66] and Gao–Moan [54] methods, the Tovo–
Benasciutti method appears to be the best, followed by the Zhao–Baker and Dirlik methods. Based on the comprehensive review by
Mršnik et al., in 2015 Larsen and Irvine [67] compared the narrowband formulation [36], Wirsching-Light [40], Ortiz-Chen [41],
Tovo-Benasciutti [14,43], 𝛼0.75 [42], Dirlik [44] and the single-moment [59,60] method. For the purposes of comparison, Larsen and
Irvine studied the above methods with respect to the same spectra types as those used by Mršnik et al. [15] and concluded that for a
large S-N slope parameter [68] (𝑘=12) all the spectral methods exhibit substantial errors, but the 𝛼0.75 and single-moment methods
an still be acceptable [67]. Similar conclusions were drawn by Quiqley et al. [69] in 2016, where in order of preference, the 𝛼0.75,

Ortiz-Chen, Dirlik, Tovo-Benasciutti and single-moment methods were advocated. Spectral methods for a fatigue-damage estimation
in bimodal random processes were compared by Benasciutti and Tovo [51] in 2005; single-moment [59,60], Jiao-Moan [48], Sakai-
Okamura [49], Fu-Cebon [50], modified Fu-Cebon [51] and Tovo-Benasciutti [14,43] method were reviewed. Among these methods,
the single-moment, Tovo-Benasciutti and modified Fu-Cebon methods were recommended as being the most accurate [51].

The primary aim of this review is to develop a common theoretical and open-source-code framework for a side-by-side comparison
of more than 20 spectral methods, including those introduced in recent years. This framework will help to advance and speed-up
future spectral-domain vibration fatigue-damage-estimation research. In this review the spectral methods are also compared to the
time-domain rainflow algorithm; the comparison is based on signals defined by the PSDs, representing typical response in structural
dynamics: spectral width, background noise, close modes and number of modes. In addition, typical vibration profiles used in
accelerated automotive tests are also considered. The reviewed methods are implemented in the supporting open-source Python
package FLife [70]; the comparison is fully reproducible using the package documentation.

This manuscript is organized as follows. In Section 2 a brief theoretical background to random-process and uniaxial vibration-
fatigue theory is presented. A detailed theoretical background of the spectral methods is given in Section 3. In Section 4, the spectral
methods are compared for different PSD signals and for different fatigue parameters, followed by a discussion of the results in
Section 5. The conclusions are drawn in Section 6.

2. Theoretical background

Vibration fatigue by spectral methods relates the theory of structural dynamics to high-cycle vibration fatigue [1]. To facilitate
a fatigue-life estimation in the frequency-domain, a brief theoretical background to stochastic process theory and uniaxial vibration
fatigue is presented in this section.

Frequency-domain spectral methods are of great interest for fatigue analysis since structural dynamics is described in the
frequency domain. The response of a linear, time-invariant, multi-degree-of-freedom system to a stationary and Gaussian-distributed
excitation is stationary and Gaussian [2]. The presented theory focuses on uniaxial vibration fatigue; a uniaxial stress state and a
high-cycle load are assumed. For a more comprehensive study of vibration fatigue the reader is referred to the work of Slavič
et al. [1].

2.1. Random process properties

For a uniaxial stationary Gaussian-distributed zero-mean random process 𝑋(𝑡) the power spectral density (PSD) is typically used
to define the process in the frequency domain. A frequent confusion and source of error are the different forms of PSD: a two-sided
symmetrical spectrum 𝑆xx(𝜔) and one-sided spectrum 𝑊xx(𝜔) have their frequency axis in rad/s, where 𝑊xx(𝜔)=2𝑆xx(𝜔) for 𝜔 > 0,

xx(𝜔) = 𝑆xx(𝜔) for 𝜔 = 0, and 𝑊xx(𝜔) = 0 for 𝜔 < 0. Alternatively, a one-sided spectrum 𝐺xx(𝑓 ) with the frequency axis in Hz is
often used and is related to the two-sided PSD as 𝐺xx(𝑓 )=4𝜋 𝑆xx(𝜔=2𝜋 𝑓 ) [2]. Dependent on the PSD type, the general form of the
𝑖th spectral moment is defined as [36,71]:

𝑚𝑖 = ∫

∞

−∞
|𝜔|𝑖 𝑆xx(𝜔) d𝜔 = ∫

∞

0
𝜔𝑖𝑊xx(𝜔) d𝜔 = (2𝜋)𝑖 ∫

∞

0
𝑓 𝑖 𝐺xx(𝑓 ) d𝑓. (1)

Even spectral moments coincide with the variance 𝜎2x of the random process 𝑋(𝑡) and the variance of its derivatives [36], for
nstance:

𝜎2x = 𝑚0, 𝜎2ẋ = 𝑚2, 𝜎2ẍ = 𝑚4. (2)

Based on spectral moments (1), the frequency of the positive slope zero crossing 𝜈+0 and the expected peak frequency 𝜈p are
efined as [2]:

𝜈+0 = 1
2𝜋

√

𝑚2
𝑚0
, 𝜈p =

1
2𝜋

√

𝑚4
𝑚2
. (3)

To describe the spectral width of the random process the bandwidth parameter 𝛼𝑖 is defined as [71,72]:

𝛼𝑖 =
𝑚𝑖

√

𝑚0 𝑚2𝑖
, (4)

where the most commonly used 𝛼2, known as the irregularity factor, represents the ratio of the positive slope zero crossing and
expected peak frequency [71]. In general, for a narrowband process the irregularity factor approaches one, whereas it tends towards
4
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zero with an increase of the frequency width of a random process. Alternatively, the spectral width parameter 𝜖 is used by some
researchers (close to zero for narrowband and close to one for broadband process) [40,73]:

𝜖 =
√

1 − 𝛼22 . (5)

Another established estimator is the Vanmarcke bandwidth parameter 𝜖V [74]:

𝜖V =
√

1 − 𝛼21 . (6)

The most important distinction between narrowband and broadband random processes is manifested in their probability
istribution of peaks. For a general broadband process 𝑋(𝑡) Rice [75] provided the probability density function (PDF) of the peak

amplitude 𝑝p(𝑥):

𝑝p(𝑥) =

√

1 − 𝛼22
√

2𝜋 𝜎x
e
− 𝑥2

2 𝜎2x
(

1−𝛼22

)

+
𝛼2 𝑥
𝜎2x

e
− 𝑥2

2 𝜎2x 𝛷

⎛

⎜

⎜

⎜

⎝

𝛼2 𝑥

𝜎x
√

1 − 𝛼22

⎞

⎟

⎟

⎟

⎠

(7)

with 𝛷 (⋅) being the standard normal cumulative distribution function:

𝛷(𝑧) = 1
√

2𝜋 ∫

𝑧

−∞
e
−𝑡2
2 d𝑡. (8)

2.2. Vibration-fatigue-life estimation

In vibration fatigue the stress-life approach is based on the S-N curve [1,68]:

𝑠𝑘a 𝑁 = 𝐶, (9)

where 𝑁 is the number of cycles to failure at the stress amplitude 𝑠a. The parameters 𝐶 and 𝑘 are the fatigue-strength coefficient
and the fatigue-strength exponent, respectively. Given the stress time–history 𝑠(𝑡), the stress cycles must be extracted to estimate the
fatigue life. The rainflow-counting algorithm [4,76] is adopted as it is accepted as the most reliable (out of many counting schemes
that are available) [77]. The hypothesis of linear damage accumulation by Palmgren [6] and Miner [7] is employed to sum the
damages due to individual stress cycles. For random processes it is customary to use the mathematical expectation (operator 𝐸 [⋅])
of the fatigue damage, since the stress-cycle amplitudes are non-deterministic:

𝐷 = 𝐸

[ 𝑛
∑

𝑖=1

1
𝑁(𝑠a,𝑖)

]

= 1
𝐶
𝐸

[ 𝑛
∑

𝑖=1
𝑠𝑘a,𝑖

]

= 𝑛
𝐶
𝐸
[

𝑠𝑘a
]

, (10)

where 𝑛 = 𝐸 [𝑛] denotes the mean number of stress cycles counted in the time period 𝑇 . The 𝑘th moment of the cycle-amplitude
istribution 𝑝a(𝑠) is given as [73]:

𝐸
[

𝑠𝑘a
]

= ∫

∞

0
𝑠𝑘 𝑝a(𝑠) d𝑠 (11)

nd can be obtained in both the time and frequency domains. In general, time-domain analysis is expensive in terms of computational
ime, and so vibration fatigue using spectral methods might be preferable [1]. In a frequency-domain fatigue analysis it is common
o refer to the damage in terms of the damage rate or the damage per unit time, defined as [1,42]:

𝑑 = 𝐷
𝑇

= 𝜈p 𝐶
−1

∫

∞

0
𝑠𝑘 𝑝a(𝑠) d𝑠, (12)

where for a stationary and Gaussian random process the expected peak frequency 𝜈p (3) is used in place of 𝑛∕𝑇 .

2.3. Narrowband random process

In the case of a narrowband random process the cycle-amplitude distribution coincides with the peak-amplitude distribution (also,
the frequency of the positive slope zero crossing 𝜈+0 coincides with the expected peak frequency 𝜈p) and the Rice distribution (7)
turns into the Rayleigh distributed amplitude PDF [78]:

𝑝a,NB(𝑠) =
𝑠
𝜎2s

e
−𝑠2

2𝜎2s , (13)

where the variance 𝜎2s of the load 𝑠(𝑡) is obtained as the zeroth spectral moment (2). With the known cycle-amplitude distribu-
tion (13), the close form of the damage intensity (12) is given by Bendat [36,37] as:

𝑑NB = 𝜈+0 𝐶
−1

(

√

2𝑚0

)𝑘
𝛤
(

1 + 𝑘
2

)

, (14)

where 𝛤 (⋅) denotes the Euler gamma function:

𝛤 (𝑧) =
∞
𝑡𝑧−1 e−𝑡 d𝑡. (15)
5

∫0
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3. Spectral methods for a broadband random process

If a random process is considered narrowband, an exact solution for the damage intensity exists, Eq. (14). In contrast, for
roadband process the solutions are devised only in an approximate form. This section discusses in detail the spectral methods
or a fatigue life-estimation of broadband random processes; based on the damage estimation concept, the methods are arranged
nto four categories, as shown in Fig. 1.

.1. Narrowband correction factor

Using the narrowband formulation in the case of a broadband random process results in a conservative fatigue-life estimate [15].
ence, numerous narrowband correction factors have been proposed. In accordance with the correction factor, the damage intensity
ssumes the following form:

𝑑method = 𝜌method 𝑑
NB, (16)

here 𝜌method designates the method’s correction factor and 𝑑NB is defined with Eq. (14).

irsching–Light method (1980). Wirsching and Light [40] adapted the narrowband method with an empirically determined
orrection factor based on extensive Monte Carlo simulations:

𝜌WL = 𝑎(𝑘) + [1 − 𝑎(𝑘)] (1 − 𝜖)𝑏(𝑘), (17)

dependent on the spectral width parameter 𝜖 (5) and on the S-N curve’s fatigue-strength exponent 𝑘. The terms 𝑎(𝑘) and 𝑏(𝑘)
ere determined as a best fit in numerical simulations for the fatigue-strength exponent 𝑘 = 3, 4, 5 and 6 with respect to the

ainflow-counting method:

𝑎(𝑘) = 0.926 − 0.033 𝑘, 𝑏(𝑘) = 1.587 𝑘 − 2.323. (18)

Ortiz–Chen method (1987). The spectral method by Ortiz and Chen [41] introduces the generalized spectral bandwidth 𝛽 to define
the correction factor:

𝜌OC =
𝛽𝑘

𝛼2
, (19)

where the generalized spectral bandwidth depends on the S-N curve’s fatigue-strength exponent 𝑘 [41,67]:

𝛽 =

√

𝑚2 𝑚2∕𝑘

𝑚0 𝑚2∕𝑘+2
. (20)

ovo–Benasciutti method (2002, 2005). Based on the findings of Frendhal and Rychlik [79], Tovo reasoned that for a Gaussian
andom process the rainflow damage intensity 𝑑RFC is always limited [14]:

𝑑RC ≤ 𝑑RFC ≤ 𝑑NB. (21)

Rychlik [39] showed that the upper bound of the damage intensity is equal to the narrowband formula 𝑑NB, whereas the lower
ound, coincident with the range-count counting method in the time domain, has no exact analytical expression. Its approximation
as adopted by Madsen [80]:

𝑑RC ≅ 𝜈p 𝐶
−1

(

√

2𝑚0 𝛼2
)𝑘

𝛤
(

1 + 𝑘
2

)

= 𝑑NB𝛼𝑘−12 . (22)

Tovo proposed a solution in a form of a linear combination between these two limits [14]:

𝑑TB = 𝑏 𝑑NB + (1 − 𝑏) 𝑑RC =
[

𝑏 + (1 − 𝑏) 𝛼𝑘−12
]

𝑑NB, (23)

from which the narrowband correction factor is revealed:

𝜌TB = 𝑏 + (1 − 𝑏) 𝛼𝑘−12 . (24)

The authors suggested two formulations for the coefficient 𝑏:

𝑏TB1 = min
{

𝛼1 − 𝛼2
1 − 𝛼1

, 1
}

, see: [14], (25)

𝑏TB2 =
(𝛼1 − 𝛼2)

[

1.112 (1 + 𝛼1 𝛼2 − (𝛼1 + 𝛼2)) e2.11𝛼2 + (𝛼1 − 𝛼2)
]

(𝛼2 − 1)2
, see: [43], (26)

here Eq. (26) was obtained based on the results from numerical simulations considering different broadband spectra with various
ombinations of 𝛼1 and 𝛼2. Moreover, the Tovo-Benasciutti method applies the same linear combination as in Eq. (23) to obtain the
tress amplitude PDF [14,65] as:

𝑝a,TB(𝑠) = 𝑏 𝑝LCC(𝑠) + (1 − 𝑏) 𝑝RC(𝑠) = 𝑏 𝛼2
𝑠
𝜎2x

e
−𝑠2

2 𝜎2x + (1 − 𝑏) 𝑠
𝜎2x 𝛼

2
2

e
−𝑠2

2 𝜎2x 𝛼
2
2 , (27)

where 𝑝LCC(𝑠) and 𝑝RC(𝑠) denote level-crossing counting and range counting marginal amplitude density, respectively. In addition,
6

the authors have extended the method for the non-Gaussian random loads [27].
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𝛼0.75 method (2004). As observed by Lutes et al. [72] there is a possible correlation of the rainflow fatigue damage on some particular
andwidth parameters (4), i.e. on 𝛼0.75. On a purely empirical basis, Benasciutti and Tovo [42] suggested a simple but effective
ormulation of the narrowband correction factor, dependent only on the 𝛼0.75 bandwidth parameter:

𝜌BT = 𝛼20.75. (28)

3.2. Rainflow PDF approximation

Instead of applying the narrowband correction factor the damage intensity can be obtained by means of an integral over the
stress-cycle amplitudes (12). Hence, the cycle amplitude PDF is a prerequisite. This subsection discusses the spectral methods that
approximate the rainflow-cycle amplitude PDF of a general broadband process.

Dirlik method (1985). Dirlik [44] devised an empirical closed-form formula for the rainflow-cycle amplitude PDF based on extensive
numerical simulations. Even if the aims of Dirlik’s research were oriented to finding an appropriate cycle amplitude distribution for
the PSD of bimodal form, his formula returns results in good agreement with the rainflow fatigue damage in the case of broadband
processes [15]. The proposed method models the cycle-amplitude probability by combining one exponential and two Rayleigh
probability densities:

𝑝a,DK(𝑠) =
1

√

𝑚0

(

𝐺1
𝑄

e
−𝑍
𝑄 +

𝐺2𝑍
𝑅2

e
−𝑍2

2𝑅2 + 𝐺3𝑍 e
−𝑍2
2

)

, (29)

where 𝑍 designates the normalized amplitude:

𝑍 = 𝑠
√

𝑚0
. (30)

The parameters 𝐺1, 𝐺2, 𝐺3, 𝑅, 𝑄 and the mean frequency 𝑥m are determined as [65]:

𝐺1 =
2
(

𝑥m−𝛼22
)

1+𝛼22
, 𝐺2 =

1−𝛼2−𝐺1+𝐺2
1

1−𝑅 ,

𝐺3 = 1 − 𝐺1 − 𝐺2, 𝑅 =
𝛼2−𝑥m−𝐺2

1
1−𝛼2−𝐺1+𝐺2

1
,

𝑄 = 1.25 (𝛼2−𝐺3−𝐺2 𝑅)
𝐺1

, 𝑥m = 𝑚1
𝑚0

(

𝑚2
𝑚4

)
1
2 .

(31)

The closed-form expression for the damage intensity is defined as [65]:

𝑑DK = 𝜈p 𝐶
−1 𝑚𝑘∕20

[

𝐺1𝑄
𝑘 𝛤 (1 + 𝑘)

+
(
√

2
)𝑘

𝛤
(

1 + 𝑘
2

)

(

𝐺2 |𝑅|𝑘 + 𝐺3
)

]

.

(32)

Zhao–Baker method (1992). Introduced by Zhao and Baker [45], this method gives the rainflow-cycle amplitude distribution in the
form of a linear combination of the Weibull and Rayleigh PDF:

𝑝a,ZB(𝑍) = 𝑤 𝛼 𝛽 𝑍𝛽−1 e−𝛼 𝑍
𝛽
+ (1 −𝑤)𝑍 e−

𝑍2
2 , (33)

here 𝑍 is the normalized amplitude (30). The weighting coefficient 𝑤 is defined as:

𝑤 =
1 − 𝛼2

1 −
√

2
𝜋 𝛤

(

1 + 1
𝛽

)

𝛼−1∕𝛽
(34)

and 𝛼 and 𝛽 are the Weibull distribution coefficients:

𝛼 = 8 − 7 𝛼2, (35)

𝛽 =

{

1.1; 𝛼2 < 0.9

1.1 + 9 (𝛼2 − 0.9); 𝛼2 ≥ 0.9
(36)

It has been observed that for low values of the fatigue-strength exponent 𝑘 the vibration fatigue damage is better related to 𝛼0.75 than
to the 𝛼2 bandwidth parameter [72]. For that reason Zhao and Baker devised an improved procedure for determining the Weibull
distribution coefficient 𝛼 (35) in the case of 𝑘=3. For details, the reader is referred to the original research [45].

For the value 𝛼2<0.13, the coefficient 𝑤 becomes greater than 1, which is an erroneous result for this specific spectral method.
The Zhao-Baker method should therefore be avoided for processes with such an (uncommonly) low value of 𝛼2. Furthermore, the
method was tuned in simulations with a fatigue-strength exponent in the range 2 ≤ 𝑘 ≤ 6 and should be used carefully otherwise.

The closed-form expression for the Zhao-Baker method is given as [45,65]:

𝑑ZB = 𝜈p 𝐶
−1 𝑚𝑘∕2

[

𝑤𝛼−
𝑘
𝛽 𝛤

(

1 + 𝑘
)

+ (1 −𝑤) 2𝑘∕2 𝛤
(

1 + 𝑘)
]

. (37)
7
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Park method (2014). In 2014, Park et al. [46] presented a spectral method where they combined three distributions to approximate
the rainflow-cycle amplitude PDF: a Rayleigh, a standard Rayleigh and a half-Gaussian distribution:

𝑝a,PK(𝑍) = 𝑐R1
𝑍
𝜎2R1

e
−𝑍2

2 𝜎2R1 + 𝑐R2
𝑍 e

−𝑍2
2 + 𝑐G

2
√

2𝜋 𝜎G
e
−𝑍2

2 𝜎2G , (38)

where 𝑍 stands for the normalized amplitude (30). To determine the unknown coefficients, the normalized moments of the rainflow
stress range distribution were utilized, as introduced by Dirlik [44]:

𝑀RR(𝑛) =
∫ ∞
0 𝑧𝑛 𝑝RFC(𝑧) d𝑧

∫ ∞
0 𝑧𝑛+1 e

−𝑧2
2 d𝑧

. (39)

The moments 𝑀RR(𝑛) up to 𝑛=3 are approximated using the bandwidth parameter 𝛼𝑖 (4), such as:

𝑀RR(1) ≈ 𝛼2, 𝑀RR(2) ≈ 𝛼0.95 𝛼1.97, 𝑀RR(3) ≈ 𝛼0.54 𝛼0.93 𝛼1.95. (40)

nserting the proposed PDF (38) into Eq. (39) for 𝑛=1, 2, 3, a system of four equations with four unknowns is formed (the result of
he parametric simulations is the approximation 𝜎R1

≈ 𝛼2), yielding the distribution coefficients:

𝑐R1
= 𝑀RR(2)−𝑀RR(3)

𝜎2R1

(

1−𝜎R1
) , 𝜎R1

≈ 𝛼2,

𝑐R2
=

−𝜎R1 𝑀RR(2)+𝑀RR(3)
1−𝜎R1

, 𝑐G = 1 − 𝑐R1
− 𝑐R2

,

𝜎G =
√

𝜋 𝛤 (1.5)
𝑐G 𝛤 (1)

(

𝑀RR(1) − 𝑐R1
𝜎R1

− 𝑐R2

)

.

(41)

The close-form expression for the damage intensity is given as:

𝑑PK = 𝜈p 𝐶
−1 (√2𝑚0

)𝑘
[

𝑐G
√

𝜋
𝜎𝑘G 𝛤

(1 + 𝑘
2

)

+ 𝑐R1
𝜎𝑘R1

𝛤
(

1 + 𝑘
2

)

+ 𝑐R2
𝛤
(

1 + 𝑘
2

)]

.

(42)

Jun–Park method (2020). Jun and Park [47] proposed a spectral method that is similar to the Park method, with one essential
distinction: the rainflow-cycle amplitude PDF is approximated with an additional exponential term:

𝑝a,JP(𝑍) =𝑄𝑐
⎡

⎢

⎢

⎣

𝐷1
1
𝜎E

e
−𝑍
𝜎E +𝐷2

𝑍
𝜎2R

e
−𝑍2

2 𝜎2R

+𝐷3𝑍 e
−𝑍2
2 +𝐷4

2
√

2𝜋 𝜎H
e
−𝑍2

2 𝜎2H

⎤

⎥

⎥

⎦

,

(43)

where 𝑍 denotes the normalized variance (30). Also, a correction factor 𝑄𝑐 is introduced to further improve the accuracy of the
roposed method:

𝑄𝑐 (𝛼1, 𝛼2) = 0.903 − 0.28 (𝛼1 − 𝛼2) + 4.448 (𝛼1 − 𝛼2)2

− 15.739 (𝛼1 − 𝛼2)3 + 19.57 (𝛼1 − 𝛼2)4 − 8.054 (𝛼1 − 𝛼2)5

+ 1.013 𝛼2 − 4.178 𝛼22 + 8.362 𝛼32 − 7.993 𝛼42 + 2.886 𝛼5.

(44)

ote that the correction factor scales the PDF, although Jung and Park state that it makes the proposed PDF model very close to
he RFC distribution [47]. The correction factor should therefore be interpreted in terms of the damage correction. The unknowns
f the proposed PDF are determined using the normalized moments of the rainflow stress range distribution 𝑀RR(𝑛), defined by
q. (39). The first four moments are approximated with the bandwidth parameter 𝛼𝑖 (4) and the special bandwidth parameter 𝜇𝑘
not to be confused with the fatigue-strength exponent 𝑘) [47]:

𝜇𝑘 =
𝑚𝑘+0.01

√

𝑚0.01 𝑚2 𝑘+0.01
(45)

as follows:

𝑀RR(1) ≈ 𝜌 𝜇−0.961 , 𝑀RR(2) ≈ 𝜌 𝜇−0.021 , 𝑀RR(3) ≈ 𝜌 𝜇0.52, 𝑀RR(4) ≈ 𝜌 𝜇0.55, (46)

where 𝜌 = 𝛼1.11 𝛼0.92 . Combining 𝑀RR(𝑛) with the proposed PDF, seven coefficients (𝐷1, 𝜎E and 𝜎R are determined according to
Dirlik [44] and Benasciutti [81], respectively) can be obtained as:

𝐷1=
2
(

𝛼1 𝛼2 − 𝛼22
)

1 + 𝛼22
, 𝐷2=

𝑀RR(2) −𝑀RR(3)
𝜎2R

(

1 − 𝜎R
) , 𝐷3=

−𝜎R𝑀RR(2) +𝑀RR(3)
1 − 𝜎R

,

𝐷4=1 −𝐷1 −𝐷2 −𝐷3, 𝜎E=
1 (

𝑀RR(1) −𝐷2 𝜎R −𝐷3 − 𝐵1𝐷4 𝜎H
)

,

8
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𝜎R≈𝛼2, 𝜎H=
1

𝐵1𝐷4

(

𝑀RR(1) −𝐷2
1 −𝐷2 𝜎R −𝐷3

)

, (47)

where 𝐴𝑛 =
𝛤 (1+𝑛)

√

2𝜋
𝑛
𝛤 (1+𝑛∕2)

and 𝐵𝑛 =
𝛤 ((1+𝑛)∕2)

√

𝜋 𝛤 (1+𝑛∕2)
. The close-form expression for the damage intensity is given as:

𝑑JP = 𝑄𝑐 𝜈p 𝐶
−1 (√2𝑚0

)𝑘
⎡

⎢

⎢

⎣

𝐷1
√

2
𝑘 𝜎

𝑘
E 𝛤 (1 + 𝑘) +𝐷2 𝜎

𝑘
R 𝛤

(

1 + 𝑘
2

)

+𝐷3 𝛤
(

1 + 𝑘
2

)

+
𝐷4
√

𝜋
𝜎𝑘H 𝛤

( 1 + 𝑘
2

)

]

.

(48)

3.3. Combined fatigue damage - cycle damage combination

Special cases of the broadband random processes are the multimodal processes, which have a spectral density formed by the
superposition of two or more well-separated narrowband contributions. Such spectra are typical of the loading responses observed
in offshore platforms under waveloadings or in automotive chassis components [51]. By analyzing these processes in the time
domain, a rainflow algorithm extracts the clearly distinguishable classes of stress cycles; a pioneering work by Jiao and Moan [48]
on bimodal fatigue analysis showed that bimodal process in the time domain exhibits small-amplitude and large-amplitude cycles.
Since structural components are often subjected to the combined effect of one low-frequency and one high-frequency load, bimodal
research gained attention and several publications tried to improve the bimodal-based research’s accuracy and efficiency.

Bimodal random process. This paragraph extends the theoretical background in terms of the bimodal random process. If the
process 𝑋(𝑡) is composed of the low-frequency (LF) component 𝑋LF(𝑡) and the high-frequency (HF) component 𝑋HF(𝑡) (which are
ndependent):

𝑋(𝑡) = 𝑋LF(𝑡) +𝑋HF(𝑡), (49)

he PSD can be defined in terms of both components:

𝑊xx(𝜔) = 𝑊xx,LF(𝜔) +𝑊xx,HF(𝜔), (50)

s depicted in Fig. 2, together with the corresponding time–history realization. Accordingly, the 𝑖th spectral moment (1) is rewritten
s:

𝑚𝑖 = ∫

∞

0
𝜔𝑖

[

𝑊xx,LF(𝜔) +𝑊xx,HF(𝜔)
]

d𝜔 = 𝑚𝑖,LF + 𝑚𝑖,HF, (51)

where 𝑚𝑖,LF and 𝑚𝑖,HF denote the 𝑖th spectral moments of 𝑋LF(𝑡) and 𝑋HF(𝑡), respectively. The frequency of the positive slope zero
rossing and the expected peak frequency (3) are revised to be congruent with the LF and HF components:

𝜈+0,mode =
1
2𝜋

√

𝑚2,mode

𝑚0,mode
, 𝜈p,mode =

1
2𝜋

√

𝑚4,mode

𝑚2,mode
, (52)

here the subscript ‘mode’ denotes LF and HF. When inspecting the random process in the time domain, clearly distinguishable
mall-amplitude and large-amplitude cycles can be observed, as shown in Fig. 2(b). The intricate dependence of the cycle-amplitude
istribution and cycle count on the bimodal PSD has been thoroughly researched [48,50,52]; once the cycle-amplitude distribution
nd cycle count are formulated, the damage corresponding to the small-amplitude and large-amplitude cycles can be estimated. The
ombined fatigue damage is then taken as the sum of both contributions:

𝑑method = 𝑑S + 𝑑L, (53)

here the superscript ‘method’ denotes the spectral method used to formulate the damage intensities due to the small-amplitude
ycles 𝑑S and the large-amplitude cycles 𝑑L.

iao–Moan method (1990). Research by Jiao and Moan [48] on bimodal fatigue analysis showed that bimodal processes in the time
omain exhibit clearly distinguishable small- and large-amplitude cycles. Accordingly, the total fatigue damage can be expressed as
he sum of the respective damages, Eq. (53), where the small-amplitude cycles are attributed solely to the HF process, as depicted
n Fig. 2(b). The small-amplitude cycle damage intensity 𝑑S is thus evaluated through a narrowband approximation (14), utilizing
he frequency of the small-amplitude cycles 𝜈+0,HF and the variance of the HF component, 𝑚0,HF. It should be noted that Jiao and
oan [48] investigated the fatigue for a random process with unit variance, 𝑚0=1.

To evaluate the damage intensity due to large-amplitude cycles 𝑑L, which is dominated by the envelope of the superimposed LF
nd HF components, the damage-accumulation model (12) is used. The large-amplitude cycle amplitude PDF is determined with
he convolution of two Rayleigh distributions:

𝑝a,L(𝑠) = 𝑝𝑅HF
(𝑠) ∗ 𝑝𝑅LF

(𝑠) = ∫

∞

0
𝑝𝑅HF

(𝑟) 𝑝𝑅LF
(𝑠 − 𝑟) d𝑟

= 𝑚0,LF 𝑠 e
− 𝑠2

2𝑚0,LF + 𝑚0,HF 𝑠 e
− 𝑠2

2𝑚0,HF

+
√

2𝜋 𝑚0,LF 𝑚0,HF (𝑠2 − 1) e−
𝑠2
2

[

𝛷

(√

𝑚0,LF 𝑠

)

+𝛷

(√

𝑚0,HF 𝑠

)

− 1

]

,

(54)
9

𝑚0,HF 𝑚0,LF



Mechanical Systems and Signal Processing 190 (2023) 110149A. Zorman et al.
where the Rayleigh distributions 𝑝𝑅HF
(𝑠) and 𝑝𝑅LF

(𝑠) are defined with Eq. (13) and 𝛷 (⋅) denotes the standard normal cumulative
distribution function (8). The frequency of the large-amplitude cycles is approximated by the mean upcrossing rate:

𝜈+0,L = 𝑚0,LF 𝜈
+
0,LF

√

√

√

√

√1 +
𝑚0,HF

𝑚0,LF

(

𝜈+0,HF
𝜈+0,LF

𝜖v

)2

(55)

with the Vanmarcke bandwidth parameter 𝜖V defined with Eq. (6).
Jiao and Moan’s method includes the damage contribution of the large-amplitude cycles only when the LF component is important

(i.e., only when 𝑚0,LF is large) and approximates Eq. (54) as:

𝑝a,L(𝑠) ≈
(

𝑚0,LF −
√

𝑚0,LF 𝑚0,HF

)

𝑠 e
− 𝑠2

2𝑚0,LF +
√

2𝜋 𝑚0,LF 𝑚0,HF (𝑠2 − 1) e−
𝑠2
2 . (56)

Considering the proposed large-amplitude cycle amplitude PDF (56), the closed-form expression for the damage intensity can be
given in the form of a damage-correction factor (16) [51]:

𝑑JM =

⎛

⎜

⎜

⎜

⎝

𝜈+0,L
𝜈+0

⎡

⎢

⎢

⎢

⎣

𝑚
𝑘
2 +2
0,LF

(

1 −

√

𝑚0,HF

𝑚0,LF

)

+
√

𝜋 𝑚0,LF 𝑚0,HF

𝑘𝛤
(

𝑘+1
2

)

𝛤
(

1 + 𝑘
2

)

⎤

⎥

⎥

⎥

⎦

+
𝜈+0,HF
𝜈+0

𝑚0,HF

)

𝑑NB = 𝜌JM 𝑑
NB.

(57)

Sakai–Okamura method (1995). Sakai and Okamura [49] assumed that in the case of a bimodal load, the total damage can be
expressed directly as the sum of two narrowband damages, effected by the LF and HF components. The close-form solution provided
by Sakai and Okamura is given as:

𝑑SO = 2𝑘∕2
2𝜋 𝐶

𝛤
(

1 + 𝑘
2

) [

𝑚(𝑘−1)∕2
0,LF 𝑚1∕2

2,LF + 𝑚
(𝑘−1)∕2
0,HF 𝑚1∕2

2,HF

]

. (58)

This method does not account for the interactions between the LF and HF components.

Fu–Cebon method (2000). Fu and Cebon [50] investigated bimodal fatigue with similar reasoning to Jiao and Moan [48], although
their approach differs in the definition of the frequency of small- and large-amplitude cycles. The damage intensity due to large-
amplitude cycles is evaluated with the damage-accumulation model (12), where the cycles are approximated by the superposition
of the LF and HF components. The large-amplitude cycle distribution is expressed by the convolution integral:

𝑝a,L(𝑠) =
1

𝑚0,L 𝑚0,H
e
− 𝑠2

2𝑚0,H
∫

𝑠

0

(

𝑠 𝑦 − 𝑦2
)

e−𝑈 𝑦
2+𝑉 𝑠 𝑦 d𝑦 (59)

with the constants 𝑈 and 𝑉 :

𝑈 = 1
2𝑚0,LF

+ 1
2𝑚0,HF

, 𝑉 = 1
𝑚0,HF

. (60)

Fu and Cebon claim that Eq. (59) has no closed-form solution and requires numerical integration; however, Benasciutti and Tovo [51]
reasoned that the presented distribution coincides with the large-amplitude cycle distribution in the Jiao-Moan method (54), since
the definition of the large-amplitude cycle is the same for both methods. The average frequency of the large-amplitude cycles is
defined as the frequency of the positive slope zero crossing of the LF component, 𝜈+0,LF.

The damage intensity associated with the small-amplitude cycles is obtained with the narrowband formulation (14), as small-
amplitude cycles are dependent only on the HF component and are considered Rayleigh distributed. However, Fu and Cebon assumed
that the frequency of the small-amplitude cycles is affected by both components: if the total number of cycles is determined by the HF
component’s frequency of the positive slope zero crossing 𝜈+0,HF and the random process length 𝑇 , then the number of small-amplitude
cycles equals

(

𝜈+0,HF − 𝜈
+
0,LF

)

𝑇 , i.e., the frequency of the small-amplitude cycles is 𝜈+0,HF − 𝜈
+
0,LF.

Modified Fu–Cebon method (2004). Benasciutti and Tovo [51] proposed a slight modification to the Fu-Cebon [50] method with
regard to the frequency of the small- and large-amplitude cycles. The large-amplitude cycle frequency is taken to be 𝜈+0,L, as defined
in the Jiao-Moan method with Eq. (55), and the small-amplitude cycle frequency is equal to the difference between the frequency of
the positive slope zero crossing of the HF component and the large cycle frequency, i.e. 𝜈+0,HF − 𝜈

+
0,L. As in the Fu-Cebon method, the

damage intensity due to the small-amplitude cycles is evaluated with the narrowband approximation (14) and the damage intensity
due to the large-amplitude cycles with the damage-accumulation model (12).

Table 1 summarizes the Jiao-Moan, Fu-Cebon and modified Fu-Cebon methods and emphasizes their differences.

Low’s bimodal method (2010). Low’s bimodal method [52] involves two important effects regarding small- and large-amplitude
cycles. Firstly, rather than equal, as assumed by Jiao and Moan [48], the small-amplitude cycles were demonstrated to be smaller
than the HF process amplitude, since the presence of the LF component reduces their amplitude (Effect A) [52]. The damage intensity
10
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Table 1
Summary of Jiao-Moan, Fu-Cebon and modified Fu-Cebon spectral methods.
Spectral
method

𝑑S, narrowband
approximation formula,
Eq. (14)

𝑑L, damage
accumulation model,
Eq. (12)

Frequency Variance Frequency PDF

Jiao-Moan 𝜈+0,HF 𝑚0,HF 𝜈+0,L 𝑝a,L, Eqs. (54), (56)
Fu-Cebon 𝜈+0,HF − 𝜈

+
0,LF 𝑚0,HF 𝜈+0,LF 𝑝a,L, Eqs. (54), (59)

Modified
Fu-Cebon 𝜈+0,HF − 𝜈

+
0,L 𝑚0,HF 𝜈+0,L 𝑝a,L, Eq. (54)

due to the small-amplitude cycles is given as:

𝑑S =
𝜈+0,HF − 𝜈

+
0,LF

𝐶 ∫

∞

0 ∫

𝜋
2

𝜋
4 𝛽

∫

∞

𝜖(𝑟LF ,𝜙)

[

𝑟HF − 𝜖(𝑟LF, 𝜙)
]𝑘

𝑝𝑅HF
(𝑟HF) 𝑝𝛷(𝜙) 𝑝𝑅LF

(𝑟LF) d𝑟HF d𝜙 d𝑟LF,

(61)

where the corresponding cycle occurrence rate 𝜈+0,HF − 𝜈
+
0,LF is according to Fu and Cebon [50]. In Eq. (61) 𝑅LF and 𝑅HF denote the

Rayleigh distributed (13) stress amplitude of the LF and HF components, respectively. The decrease of the small-amplitude cycles
is dependent on the LF component and the phase angle 𝜙:

𝜖(𝑟LF, 𝜙) =
𝜋
2 𝛽

𝑟LF sin𝜙, (62)

here 𝛽 denotes the ratio of the HF and LF component’s frequency of positive slope zero crossing (52) and the phase angle 𝜙 follows
uniform distribution [52]:

𝛽 =
𝜈+0,HF
𝜈+0,LF

, (63)

𝑝𝛷(𝜙) =
(

𝜋
2
− 𝜋

4 𝛽

)−1
, 𝜋

4 𝛽
≤ 𝜙 ≤ 𝜋

2
. (64)

Secondly, the amplitude of the large-amplitude cycles is smaller than the direct addition of the LF and HF process amplitudes
Effect B) [52], since the peaks of the component processes do not occur at the same time. The damage intensity due to the
arge-amplitude cycles is formulated as:

𝑑L =
𝜈+0,LF
𝐶 ∫

∞

0 ∫

∞

0 ∫

𝜋

0

[

𝑅𝑙(𝑟LF, 𝑟HF, 𝜓)
]𝑘

𝑝𝛹 (𝜓) 𝑝𝑅HF
(𝑟HF) 𝑝𝑅LF

(𝑟LF) d𝜓 d𝑟HF d𝑟LF,
(65)

here 𝑅𝑙 is a function of three independent random variables: the Rayleigh distributed (13) stress amplitudes 𝑅LF and 𝑅HF and the
uniformly distributed phase parameter 𝛹 . Two cosine functions are used to modify 𝑅LF and 𝑅HF:

𝑅𝑙(𝑟LF, 𝑟HF, 𝜓) = 𝑟LF cos
(

𝑐
(

𝑟LF, 𝑟HF
)

𝜓
)

+ 𝑟HF cos
((

𝛽 𝑐
(

𝑟LF, 𝑟HF
)

− 1
)

𝜓
)

, (66)

𝑐
(

𝑟LF, 𝑟HF
)

=
𝑟HF 𝛽

𝑟LF + 𝑟HF 𝛽2
, (67)

𝑝𝛹 (𝜓) =
1
𝜋
, 0 ≤ 𝜓 ≤ 𝜋. (68)

The evaluation of the damage intensity due to the small-amplitude cycles (61) and large-amplitude cycles (65) requires a triple
ntegration over three random variables, namely the HF and LF process amplitudes and a phase angle. However, the innermost
ntegral of both equations can be evaluated analytically following a series expansion of the integrands [52], resulting in a reduction
f the numerical integration to two dimensions.

ow method (2014). In 2014 Low [53] devised a simple and practical formula for fatigue-life prediction in the case of a bimodal
aussian process. In his work, Low formulated a correction factor for the narrowband approximation, also viewed as the Rayleigh

atio [71]. Without a loss of generality, the total variance of the random process is normalized to unity [53]:

𝜎2XLF
+ 𝜎2XHF

= 1. (69)

Considering the narrowband correction factor’s form (16), the damage intensity is formulated as:

𝑑Low =
𝐿(𝜎2XHF

, 𝛽, 𝑘)
√

1 − 𝜎2 + 𝛽2 𝜎2
𝑑NB, (70)
11

XHF XHF
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where 𝐿
(

𝜎2xHF , 𝛽, 𝑘
)

denotes the LF damage ratio [53] and is approximated on the basis of a numerical simulation by minimizing
he RMS error between the predicted damage and the rainflow-counting simulation results:

𝐿 =
[

𝑏1 𝜎XHF
+ 𝑏2 𝜎2XHF

− (𝑏1 + 𝑏2) 𝜎3XHF
+ 𝜎𝑘XHF

]

(𝛽 − 1) + 1,

𝑏1 =
(

1.111 + 0.7421 𝑘 − 0.0724 𝑘2
)

𝛽−1 + (2.403 − 2.483 𝑘) 𝛽−2, (71)
𝑏2 = (−10.45 + 2.65 𝑘) 𝛽−1 +

(

2.607 + 2.63 𝑘 − 0.0133 𝑘2
)

𝛽−2.

The approximation is valid for 3 ≤ 𝛽 < ∞, [0 ≤ 𝜎2HF ≤ 1] and 3 ≤ 𝑘 ≤ 8. In Eqs. (70) and (71) the parameters 𝛽, 𝜎2xHF and 𝑘 are the
ratio of frequencies of the positive slope zero crossing (63), the variance of the high-frequency component and the fatigue-strength
exponent (9), respectively.

Gao–Moan method (2008). Gao and Moan [54] proposed a fatigue-damage combination method that estimates the cycle probabil-
ities by combining three narrowband processes as:

𝑋(𝑡) = 𝑋LF(𝑡) +𝑋MF(𝑡) +𝑋HF(𝑡), (72)

𝑊xx(𝜔) = 𝑊xx,LF(𝜔) +𝑊xx,MF(𝜔) +𝑊xx,HF(𝜔), (73)

where the subscripts LF, MF and HF denote the low-, middle- and high-frequency components, respectively. Each of them is Rayleigh
distributed with the respective variance of 𝑚0,LF, 𝑚0,MF and 𝑚0,HF, expressed with the spectral moment as:

𝑚𝑖 = ∫

∞

0
𝜔𝑖

[

𝑊xx,LF(𝜔) +𝑊xx,MF(𝜔) +𝑊xx,HF(𝜔)
]

d𝜔 = 𝑚𝑖,LF + 𝑚𝑖,MF + 𝑚𝑖,HF. (74)

The proposed method is based on a bimodal fatigue analysis by Jiao and Moan [48] and assumes the total damage as the sum of
individual damages due to small-, medium- and large-amplitude cycles:

𝑑GM = 𝑑S + 𝑑M + 𝑑L. (75)

As in the Jiao-Moan method, small-amplitude cycles are formed due to the HF component and the corresponding damage intensity
𝑑S is evaluated with the narrowband approximation formula (14). Middle-amplitude cycles are formed due to the superposition of
the MF and HF components and, analogously, the large-amplitude cycles are attributed to the superposition of the HF, MF and LF
components of the random process, as depicted in Fig. 3(b). The damage-accumulation model (12) is used to evaluate the damage
intensities 𝑑M and 𝑑L, where the expected peak frequencies are approximated as:

𝜈+0,M =
√

𝑚2,HF 𝜖2V,HF + 𝑚2,MF
𝜎MF

(

𝜎2HF + 𝜎
2
MF

) , (76)

𝜈+0,L =
√

𝑚2,HF 𝜖2V,HF + 𝑚2,MF 𝜖2V,MF + 𝑚2,LF

×

⎡

⎢

⎢

⎢

⎢

⎣

2 𝜎LF
√

𝜎2HF + 𝜎
2
MF + 𝜎

2
LF − 𝜋 𝜎HF 𝜎MF

2
(

√

𝜎2HF + 𝜎
2
MF + 𝜎

2
LF

)3

+

2 𝜎HF 𝜎MF arctan

(

𝜎HF 𝜎MF

𝜎LF
√

𝜎2HF+𝜎
2
MF+𝜎

2
LF

)

2
(

√

𝜎2HF + 𝜎
2
MF + 𝜎

2
LF

)3

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(77)

In Eqs. (76) and (77) the 𝜖V,MF and 𝜖V,HF are the Vanmarcke parameters (6) for the MF and HF components of the random process,
espectively. The medium- and large-amplitude cycle probabilities are derived by means of the convolution integral:

𝑝a,M(𝑠) = ∫

∞

0
𝑝a,HF(𝑆) 𝑝a,MF(𝑠 − 𝑆) d𝑆, (78)

𝑝a,L(𝑠) = ∫

∞

0
𝑝a,M(𝑆) 𝑝a,LF(𝑠 − 𝑆) d𝑆, (79)

here 𝑝a,HF, 𝑝a,MF and 𝑝a,LF are the cycle amplitude PDF for the respective narrowband random processes (13). Gao and Moan used
ermite integration to perform the convolution and obtain the PDF for the combination of Rayleigh random variables [54].

It is possible to generalize the trimodal approach to an arbitrary broadband random process that must first have its spectrum
plit into three parts according to some criterion. Gao and Moan [54] suggest the division using the criterion of equal area under
12

he PSD curve. Each of the parts then takes the role of one of the processes – 𝑋LF(𝑡), 𝑋MF(𝑡) and 𝑋HF(𝑡).
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Fig. 3. Trimodal random process; (a) PSD, (b) time history and three distinct cycle categories: small-, medium- and large-amplitude cycles.

.4. Combined fatigue damage - narrowband damage combination

The fatigue-damage combination form is convenient for practical applications because the combined fatigue damage is expressed
s an explicit form of individual damages. Provided that the broadband stress spectrum is decomposed into a set of narrow-band
pectral contributions, the classical narrowband formulation can be used to obtain the individual damages. Because the damage is
onlinearly dependent on stress, a direct sum of the individual damage contributions will underestimate the total damage.

otsberg method (2005). Lotsberg [57] presented a method for a fatigue-damage combination as a nonlinear combination of the LF
nd HF damage contributions:

𝑑LB = 𝑑NB,HF
(

1 −
𝜈+0,LF
𝜈+0,HF

)

+ 𝜈+0,LF
⎛

⎜

⎜

⎝

(

𝑑NB,HF

𝜈+0,HF

)
1
𝑘

+

(

𝑑NB,LF

𝜈+0,LF

)
1
𝑘 ⎞
⎟

⎟

⎠

𝑘

, (80)

where 𝑑NB,LF and 𝑑NB,HF are obtained by a narrowband formulation (14), associated with the LF and HF components, respectively.
The frequency of the positive zero slope crossing for both components is defined by Eq. (52). Lotsberg’s formula is widely used in
DNV specifications [82,83].

Huang–Moan method (2006). Huang and Moan [58] proposed a method that combines damage due to the LF and HF components
in a nonlinear way:

𝑑HM =

⎛

⎜

⎜

⎝

(

𝑑NB,LF

𝜈+0,LF

)
2
𝑘
+
(

𝑑NB,LF

𝜈+0,LF

)
2
𝑘 ⎞
⎟

⎟

⎠

𝑘−2
2

⎛

⎜

⎜

⎝

(

𝜈+0,LF
)2

(

𝑑NB,LF

𝜈+0,LF

)
2
𝑘
+
(

𝜈+0,HF
)2

(

𝑑NB,HF

𝜈+0,HF

)
2
𝑘 ⎞
⎟

⎟

⎠

3
2

⎛

⎜

⎜

⎝

(

𝜈+0,LF
)2

(

𝑑NB,LF
𝜈+0,LF

)
2
𝑘
+
(

𝜈+0,HF
)2

(

𝑑NB,HF
𝜈+0,HF

)
2
𝑘 ⎞
⎟

⎟

⎠

1
2

, (81)

here 𝑑NB,LF and 𝑑NB,HF are obtained by a narrowband formulation (14), associated with the LF and HF components, respectively.
he frequency of the positive zero slope crossing for both components is defined by Eq. (52).

ingle-moment method (1990). The single-moment method of Lutes and Larsen is an empirical formula that estimates the damage
ntensity based on 2∕𝑘-th spectral moment 𝑚2∕𝑘 [59,60]:

𝑑SM = 2𝑘∕2
2𝜋 𝐶

𝛤
(

1 + 𝑘
2

)(

𝑚2∕𝑘

)𝑘∕2
. (82)

The method was formulated on the basis of a rainflow analysis for a bimodal PSD as an improvement to the narrowband
approximation (14). It is clear that for a narrowband process with a central frequency 𝜔0, Eq. (82) converges to the narrowband
approximation formula, as

(

𝑚2∕𝑘
)𝑘∕2 ≈ 𝜔0 𝑚

𝑘∕2
0 and 𝜈+0 = 𝜔0∕2𝜋.

Notes on projection-by-projection (2011). Although the single-moment method was elaborated on a purely empirical basis, Benasciutti
et al. [55] provided a mathematical interpretation using the Projection-by-Projection (PbP) scheme, in which the fatigue damage
due to multiaxial loading is estimated by a suitable non-linear sum of the damage contributions for uncorrelated uniaxial stochastic
processes. By decomposing the PSD into 𝑛 infinitesimal spectral contributions and summing the corresponding narrowband damage
intensities 𝑑NB,𝑖 (14) through a quadratic amplitude sum of the PbP method [62], the damage covering all the bands is obtained:

𝑑PbP =

( 𝑛
∑

(

𝑑NB,𝑖
)

2
𝑘

)
𝑘
2

(83)
13

𝑖=1
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which turns out to be the discrete form of the single-moment method (82):

𝑑PbP =

( 𝑛
∑

𝑖=1

(

𝑑NB,𝑖
)

2
𝑘

)
𝑘
2

=

⎧

⎪

⎨

⎪

⎩

𝑛
∑

𝑖=1

[

𝜔𝑖
2𝜋 𝐶

(

√

2𝑆xx(𝜔𝑖) d𝜔
)𝑘

𝛤
(

1 + 𝑘
2

)

]
2
𝑘
⎫

⎪

⎬

⎪

⎭

𝑘
2

= 2
𝑘
2

2𝜋 𝐶
𝛤
(

1 + 𝑘
2

)

[ 𝑛
∑

𝑖=1
𝜔

2
𝑘
𝑖 𝑆xx(𝜔𝑖)𝛥𝜔

]
𝑘
2

= 𝑑SM. (84)

Han–Ma (2016). Han and Ma [64] researched the fatigue damage in the case of a bimodal random process, where they combined
fatigue damage subjected to the LF and HF Gaussian random processes and proposed the method:

𝑑CB =
(

(

𝑑NB,LF
)

2
𝑘 +

(

𝑑NB,HF
)

2
𝑘

)
𝑘
2
, (85)

where the quadratic amplitude sum of the PbP method (83) is used (for 𝑛=2).

ands method (2015). The bands method was proposed by Braccesi et al. [61] and assumes uncorrelated narrowband random
rocesses, whose variance can be summed according to the laws of the combination of random variables. To combine the fatigue
amage of all the bands using a simple sum, the condition of the same frequency 𝜈+0,ref for all the bands is imposed. In this case, the
𝑖th band damage equivalence has to be respected:

𝑚0,ref ,𝑖 =

(

𝜈+0,𝑖
𝜈+0,ref

)2∕𝑘

𝑚0,𝑖 (86)

nd the reference zero-order moment of a combination process can be evaluated as:

𝑚0,ref =
𝑛
∑

𝑖=1
𝑚0,ref ,𝑖. (87)

he damage intensity is estimated by the narrowband approximation formula (14) (with the frequency of positive slope zero crossing
+
0,ref and the variance 𝑚0,ref ):

𝑑BM = 𝜈+0,ref 𝐶
−1

(

√

2𝑚0,ref

)𝑘
𝛤
(

1 + 𝑘
2

)

, (88)

indicating that the proposed fatigue-combination rule is equivalent to a quadratic amplitude sum of the PbP criterion [62,63].

4. Comparison of spectral methods

In general, the spectral load is not narrowband or of any other shape that some of the methods assume. Therefore, an ideal
spectral method should be accurate across various spectra and also applicable for different types of material. The reviewed spectral
methods are compared to the time-domain rainflow algorithm using the numerical simulations, with the comparison being based
on the 104 different PSD spectra and three different fatigue-strength exponents. In addition, the comparison is supported by the
FLife [70] package and is fully reproducible using the package documentation. Basic vibration-fatigue spectral-analysis workflow
using the FLife is given by example use code in the Appendix.

4.1. Simulated spectra

Similar to Mršnik et al. [15], the researched 104 spectra are arranged in the following categories: spectral width (SW), background
noise (BN), close-mode spectra (CM), multi-mode spectra (MM) and typical automotive spectra (AM). To further investigate the
applicability of spectral methods for the fatigue analysis of a bimodal Gaussian process, a bimodal spectra (BM) category is
additionally researched.

The researched power spectral densities are formed by the superposition of the ideal rectangular spectra (with the exception of
the AM spectra). The Vanmarcke bandwidth parameter 𝜖V is used to describe the spectral width of each block; though there is no
rigorous criterion to distinguish narrowband and broadband random processes, the cases of 𝜖V < 0.1 are treated as narrowband in
practice [84]. In this study, the width of each block is adjusted such that 𝜖V=0.05. The ranges of the Vanmarcke parameter for each
spectra category are given in Table 2. All the power spectral densities are defined in the frequency range 10 Hz to 1000 Hz with
an RMS value of 10 MPa. The details of the PSD categories are defined in the following paragraphs.

Spectral width (SW). The proposed category is used to research the effect of the spectral width on the accuracy of the spectral
methods. With a central frequency of 450 Hz and 𝜖V = 0.05, the initial narrowband random process expands in both directions
during each iteration, as depicted in Fig. 4(a). In each iteration the Vanmarcke parameter of the random process is increased by
14

0.05. The number of researched spectra in this category is nine.
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Table 2
Ranges of the Vanmarcke parameter 𝜖V for each spectra category.

SW BN CM MM AM BM

𝜖V 0.05–0.45 0.05–0.45 0.12–0.61 0.44–0.47 0.65–0.71 0.12–0.87

Table 3
Bimodal spectra parameters.
𝛾 𝑚0,LF∕𝑚0 𝑓LF [Hz]

1.5, 2, 2.5, 3, 4, 7, 10, 15, 30 0.1, 0.2, 0.3, . . . , 0.8, 0.9 25

Background noise (BN). The background-noise category is used to research the effect of the background noise on the accuracy of
he spectral methods. The initial process is considered narrowband with a central frequency of 450 Hz and a Vanmarcke parameter
f 𝜖V=0.05. In each iteration the amplitude of the background noise in the frequency range 10 Hz to 900 Hz is increased, such that
he Vanmarcke parameter of the random process increases by 0.05, as depicted in Fig. 4(b). The number of researched spectra in
his category is nine.

lose-mode spectra (CM). The bimodal random process represents one of the basic forms of an engineering structural dynamic
response, so the close-modes spectra category was used to determine the effect of the close modes on the fatigue-life estimate’s
accuracy. Two rectangular blocks with a Vanmarcke parameter 𝜖V =0.05 and central frequencies of 100 and 800 Hz were, at each
iteration step, moved closer by 100 Hz, see Fig. 4(c). The number of researched spectra in this category is seven.

Multimode spectra (MM). Multimode spectra are prevalent in civil, mechanical and marine engineering. To research the influence
of multiple modal frequencies on the fatigue-life spectral estimates, the multimode spectra category is defined. The initial spectrum
has three dominant modes and with each subsequent iteration one additional mode is added (up to a maximum of six), as shown in
Fig. 4(d). The modes are positioned at the central frequencies of 100, 250, 400, 550, 700 and 850 Hz with the Vanmarcke parameter
of each mode being 𝜖V=0.05. The number of researched spectra in this category is four.

Typical automotive spectra (AM). To test the applicability of spectral methods in real fatigue loads, three realistic spectra that are
typical for the automotive industry are used in this category, as shown in Fig. 4(e). The number of researched spectra in this category
is three.

Bimodal spectra (BM). Since structural components are often subjected to the combined effect of one low-frequency and one high-
frequency load, the fatigue analysis of the bimodal Gaussian process has appeared as a topic on its own [51]. Accordingly, a bimodal
spectra category is formulated, where a bimodal spectrum is formed by the superposition of two rectangular blocks [51,59], as
illustrated in Fig. 4(f). The width of each block is adjusted such that the Vanmarcke parameter is 𝜖V = 0.05, ensuring that both
components are practically narrowband. These two-block spectra are characterized by the frequency ratio 𝛾 and the area ratio 𝛽 as:

𝛾 =
𝑓HF
𝑓LF

, 𝛽 =
∫ 𝑓HF,ub𝑓HF,lb

𝐺xx(𝑓 ) d𝑓

∫ 𝑓LF,ub𝑓LF,lb
𝐺xx(𝑓 ) d𝑓

=
𝑚0,HF

𝑚0,LF
=
𝑚0 − 𝑚0,LF

𝑚0,LF
. (89)

Given the frequency ratio 𝛾, the central frequency 𝑓LF and variance 𝑚0,LF of LF mode, the amplitude of both blocks can be determined.
In this study, permutations of these parameters are specified in Table 3. Accordingly, the number of researched spectra in this
category is 72.

4.2. Fatigue-life estimate relative error

The frequency-domain fatigue-life estimates were compared to the fatigue-life estimate in the time domain using a combination
of the rainflow count [3,4,76] and the Palmgren–Miner linear damage-accumulation rule (10). Note that failure occurs when the
damage 𝐷 ≥ 1, but in practice thresholds that are conservatively lower are often used. While 𝐷 = 1 is adopted in this study, the
fatigue life 𝑇 is correlated with the damage intensity 𝑑 (12) as [1]:

𝑇 = 1
𝑑

(90)

nd the relative error of the fatigue-life estimate 𝑇 xx
err can be defined as:

𝑇 xx
err =

𝑇 xx − 𝑇 RFC

𝑇 RFC
, (91)

here the 𝑇 xx designates a fatigue-life estimate, obtained with one of the reviewed methods, whereas the time-domain-based
ainflow life 𝑇 RFC is assumed to be the exact reference value.

pplied materials. The 𝑆−𝑁 curve (9) slope 𝑘 significantly affects the accuracy of the fatigue-life estimation. Accordingly, this study
onsiders different materials, presented by Petrucci and Zuccarello [66], specified in Table 4.
15
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a

Fig. 4. Researched spectra: (a) spectral width (SW); (b) background noise (BN); (c) close mode spectra (CM); (d) multimode spectra (MM); (e) automotive
spectra (AM); (f) bimodal spectra (BM).

Table 4
S-N curve parameters [66] used in spectral methods comparison.

C (MPak) k

Steel 1.934 × 1012 3.324
Aluminium 6.853 × 1019 7.300
Spring steel 1.413 × 1037 11.760

Reference criteria - time-domain analysis. The tree-point rainflow counting (RFC) algorithm [4] as implemented in [85] is used to
extract the cycle ranges and the corresponding mean values from the time-domain representation of a random process.

An established procedure to obtain a time series from the PSD involves the discretization of the spectrum into 𝑁 components,
each of equal frequency interval 𝛥𝜔. Then, the time series may be generated as [86]:

𝑥 (𝑡) =
𝑁
∑

𝑘=1
𝐴𝑘 cos

(

𝜔𝑘 𝑡 + 𝜙𝑘
)

, (92)

where the phase angle 𝜙𝑘 is uniformly distributed on the interval [0, 2𝜋) and the amplitude 𝐴𝑘 follows a Rayleigh distribution (93)
with parameter 𝜎x,𝑘 obtained from one-sided spectrum 𝑊xx(𝜔):

𝑝A𝑘 (𝑎) =
𝑎
𝜎2x,𝑘

e
−𝑎2

2𝜎2x,𝑘 , 𝜎x,𝑘 =
√

𝛥𝜔𝑊xx(𝜔𝑘). (93)

The sampling frequency 𝑓s has a fundamental role in the IDFT; for all the frequency components in the PSD to be manifested in the
ssociated time series, the sampling frequency is set according to the Nyquist theorem, 𝑓s ≥ 2 𝑓max [87]. Dirlik [44] pointed out that
16
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Table 5
Percentage of spectral estimates within different margins of relative error for steel, 𝑘=3.324 (green), aluminium, 𝑘=7.3 (blue) and spring steel, 𝑘=11.76 (red).

Spectral method Relative error

< 5% < 10% < 20% < 50%

% of spectra % of spectra % of spectra % of spectra

Narrowband 26 12 4 50 23 14 74 79 48 100 100 100
Wirsching-Light 21 0 0 57 3 3 100 4 3 100 100 56
Ortiz-Chen 98 37 30 100 68 51 100 100 90 100 100 100
𝛼0.75 77 43 25 100 74 51 100 97 97 100 100 100
Tovo-Benasciutti 1 31 12 7 55 26 17 80 88 55 100 100 97
Tovo-Benasciutti 2 43 16 17 95 37 30 100 55 53 100 100 91
Dirlik 46 39 28 100 59 64 100 94 89 100 100 100
Zhao-Baker 94 51 45 94 83 58 97 97 88 100 100 100
Park 77 30 16 100 66 58 100 87 81 100 100 100
Jung-Park 84 49 25 100 61 56 100 100 88 100 100 100
Jiao-Moan 6 3 6 11 6 9 41 16 11 93 93 50
Sakai-Okamura 0 0 0 0 0 0 0 0 0 47 0 0
Fu-Cebon 0 0 0 0 0 0 0 0 0 75 31 29
Modified Fu-Cebon 11 3 6 24 6 9 67 21 11 100 93 59
Low (2010)a 28 25 3 68 39 3 93 46 26 100 58 29
Low (2014) 25 31 45 84 57 57 100 95 90 100 100 100
Lotsberg 0 0 0 0 0 0 0 0 0 29 0 0
Huang-Moan 55 63 52 94 87 71 100 97 97 100 100 100
Gao-Moan 16 0 0 19 0 0 58 0 0 100 3 0
Single Moment 59 32 19 80 69 60 93 80 77 100 100 100
Bands Method 62 30 17 80 74 55 93 80 77 100 100 100

aFor Low (2010) method 𝑘=3, 𝑘=7 and 𝑘=12 is used for steel, aluminium and spring steel, respectively.

n this research the spectra are defined in the frequency interval 10 Hz to 1000 Hz, the sampling frequency is set to 𝑓s=10 𝑓max=10
kHz.

Because the simulated stress time-history is a random process, the RFC fatigue damage is a random variable with the mean value
given by Eq. (10). To reduce the uncertainty of the RFC damage, 20 time-histories of one hour are simulated for each spectrum
and the average damage is then taken as the reference fatigue damage. The relative error of the RFC damage (averaged over 20
time-histories) for a signal fragment relative to the complete (1 h) time-history fell below 2% at around 2 s of the time-history for
steel, at around 150 s for aluminium and at around 2600 s for spring steel. The number of cycles (and half-cycles) counted ranged
from 5 × 106 to 4.7 × 107, which ensured convergence of the RFC fatigue-life estimate. It should be noted that, from a physical point
of view, such a high number of cycles is outside the high cycle fatigue region, where the S-N model is applied.

Once the rainflow matrix is extracted, the cycle mean values are discarded since the discussed spectral methods do not directly
address their affect on the fatigue life. Moreover, it has been shown that the rainflow cycle mean stress has a t-location distribution
with zero mean [88]. In terms of the fatigue strength a tensile normal mean stress is detrimental and a compressive normal mean
stress is beneficial [73]; the effect of the rainflow mean stress can be ignored in the frequency-domain fatigue-life estimation, and
only the stress cycle amplitude is considered.

4.3. Results

The spectral method comparison results for steel (green), aluminium (blue) and spring steel (red) are detailed in Table 5, where
the percentages of estimates for each method that are inside a certain margin of relative error (91) are given, considering a total of
32 spectra (SW, BN, CM, MM and AM spectra category). The reasoning for such a comparison is the fact that the compared methods
can be applied to an arbitrary spectra and the user is interested in the method that performs best. For instance, when steel is used
the narrowband formulation’s relative error is less than 0.1 for 50% of the analyzed spectra, according to Table 5.

Even though some spectral methods are formulated for specific applications, e.g., the bimodal spectral methods are meant to
be used for a random stress response that constitutes of two modal peaks, they are compared with methods for general broadband
processes. The generalization of the bimodal and trimodal spectral methods to broadband processes is accomplished by splitting the
power spectral density into two or three parts, respectively. The criteria for this procedure is arbitrary, however, in this review the
splitting is made according to equal variance criteria, with each part then being treated as one of the modes [48].

From Table 5 is clear that the 𝑆 −𝑁 curve’s slope 𝑘 affects the accuracy of the spectral methods: with the increase of the
fatigue-strength exponent, the fatigue-life estimates become generally less accurate. Because they exhibited the best performance,
the Ortiz-Chen (OC), 𝛼0.75, Tovo-Benasciutti 2 (TB2), Dirlik (DK), Zhao-Baker (ZB), Park (PK), Jun-Park (JP) and Huang-Moan (HM)
methods were selected for a detailed analysis in the Discussion. Figs. 5–7 show the relative error of the selected estimates for each
spectrum in examined spectra categories for steel (OC, 𝛼0.75, TB2, DK, ZB, PK and JP), aluminium (OC, 𝛼0.75, DK, ZB, PK, JP and
HM) and spring steel (OC, 𝛼0.75, DK, ZB, PK, JP and HM), respectively. In the figures the Vanmarcke bandwidth parameter (6) is
lotted as a secondary 𝑦-axis.
17
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Fig. 5. Comparison of relative errors for steel, 𝑘 = 3.324.

Fig. 6. Comparison of relative errors for aluminium, 𝑘 = 7.3.

Fig. 7. Comparison of relative errors for spring steel, 𝑘 = 11.76.

As the fatigue analysis of the bimodal Gaussian process appeared as a topic on its own [51], a comparison of the bimodal spectral
method was conducted on a bimodal spectra category (BM) to further investigate its applicability. Table 6 details the percentages of
estimates for each bimodal method that are inside a certain margin of relative error (91). The comparison results for steel (green),
aluminium (blue) and spring steel (red) are obtained, considering a total of 72 bimodal spectra (see Table 3).

Because they exhibited the best performance, the Jiao-Moan (JM), Fu-Cebon (FC), modified Fu-Cebon (MFC), Low’s bimodal
(2010), Low (2014) and Huang-Moan (HM) methods were selected for a detailed analysis in the Discussion. Figs. 8–10 show the
relative errors of the selected estimates for each spectrum in the examined spectra categories for steel (JM, FC, MFC, Low’s bimodal
(2010) and Low (2014)), aluminium (JM, FC, MFC, Low (2014) and HM) and spring steel (JM, FC, MFC and HM), respectively.
18
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Table 6
Percentage of spectral estimates within different margins of relative error for 𝑘=3.324 (green), 𝑘=7.3 (blue) and 𝑘=11.76 (red), bimodal spectra.

Spectral method Relative error

5% 10% 20% 50%

% of spectra % of spectra % of spectra % of spectra

Jiao-Moan 65 8 8 74 22 12 85 47 28 100 96 72
Sakai-Okamura 6 0 0 11 1 0 26 4 1 61 18 4
Fu-Cebon 0 6 1 18 14 8 42 39 28 100 76 60
Modified Fu-Cebon 42 8 8 69 18 14 89 40 26 100 96 69
Low (2010)a 100 67 28 100 72 51 100 78 57 100 82 60
Low (2014) 89 78 15 100 92 62 100 99 79 100 100 90
Lotsberg 0 0 0 1 0 0 11 0 0 74 6 0
Huang-Moan 32 36 26 49 43 39 76 58 53 93 92 89

aFor Low (2010) method 𝑘=3, 𝑘=7 and 𝑘=12 is used for steel, aluminium and spring steel, respectively.

Fig. 8. Comparison of relative errors for steel, 𝑘 = 3.324, bimodal spectra.

Fig. 9. Comparison of relative errors for aluminium, 𝑘 = 7.3, bimodal spectra.

. Discussion

An ideal damage-estimation method for use in a design process should be consistent across different spectra and different slopes
f the 𝑆−𝑁 curve. To guarantee a safe design it is preferable for the spectral method to be conservative when not accurate; however,
his could possibly result in economic losses. What follows is a brief discussion on the accuracy of the selected methods for each
pectral category.

For each material the best-performing spectral methods were selected for a detailed analysis based on Tables 5 and 6. Note that
t is nonconservative to underestimate the damage intensity, as the fatigue life will be overestimated. The relative error 𝑇 xx

err (91) of
he selected methods with respect to the RFC scheme is shown in Figs. 5–10, with the Vanmarcke bandwidth parameter (6) being
lotted on the secondary 𝑦-axis.

pectral width. For steel, the best performing spectral methods exhibit a relative error less than 7%. OC is the most conservative
ethod, whereas TB2 is strictly nonconservative. With an increase of the exponent 𝑘, the fatigue-life estimates tend to become

more conservative. The relative error is increased, although it is still below 10% and 17% (with one exception of a ZB estimate) for
19



Mechanical Systems and Signal Processing 190 (2023) 110149A. Zorman et al.

r
a

i

6

r
m
s
c
t

t
(
e

Fig. 10. Comparison of relative errors for spring steel, 𝑘 = 11.76, bimodal spectra.

aluminium and spring steel, respectively. The JP method is the most accurate of the selected methods, with a relative error below
7% for all the materials.

Background noise. In the case of the background noise category, the fatigue-life estimates have a similar trend as for the spectral
width category. The OC and TB2 methods are again the most and the least conservative, respectively. The relative error is below
12% for the aluminium and below 18% for the spring steel (with one exception of a ZB estimate), where the majority of the estimates
are conservative. The method that performs best is the JP method, regardless of the value of 𝑘.

Close mode spectra. With the exception of the ZB method, all the best-performing methods have relative error below 10% in the
case of steel. When the modes are farther apart, the ZB method gives a very conservative estimate, with a relative error up to 25%.
For aluminium and steel, the relative error is below 25%, except for the DK and ZB methods with relative errors up to 40%. A
significant dependency of the estimates on the Vanmarcke parameter can be observed for all the methods.

Multimode spectra. For steel the relative error is below 10% for all the best-performing methods. Except for the ZB method, the
fatigue-life estimates are nonconservative. With an increase of the exponent 𝑘, the relative error is under 15% for both aluminium
and spring steel. For all the materials, the ZB is the most conservative method, with a relative error below 10%.

Typical automotive spectra. For steel the relative error is below 10% for all the in-detail-discussed methods. With an increase of the
parameter 𝑘 the spectral methods become nonconservative with a relative error below 25% for aluminium and spring steel. The
HM method exhibits great accuracy, with the relative error below 5% for all the materials.

Bimodal spectra. Low’s bimodal (2010) method is the most comprehensive; however, because the damage intensity due to large
stress cycles is approximated through the McLaurin series, sufficient engineering precision is up to 𝑘=6 [52] and the method was
applied only for steel. The relative error for Low’s bimodal method is below 5%, when the central frequency ratio is 𝛾 ≤ 2. For
larger 𝛾 the relative error is below 2%, with the estimates being conservative.

The Low (2014) method [53] also has good accuracy, with a relative error below 2% for steel and 5% for aluminium. As the
method is devised for 𝛾 ≥ 3 and 3 ≤ 𝑘 ≤ 8, it was not applied to spring steel.

The FC method is always conservative, within the relative error below 50%, 65% and 75% for steel, aluminium and spring steel,
respectively. With an increase of the central frequency ratio 𝛾, the relative error becomes smaller (e.g., below 10% for 𝛾=15).

For steel the relative error of the JM and MFC methods is below 35% when 𝛾=1.5 and is reduced with a larger central frequency
atio (e.g., for 𝛾 =15 the relative error is below 5%). For aluminium and spring steel the relative error is increased. Both methods
re very dependent on the Vanmarcke bandwidth parameter.

The HM method gives good predictions only in a small bandwidth range, e.g., for all the researched materials the relative error
s below 5% when 𝛾=1.5, whereas the error is up to 20% when 𝛾=2.

. Conclusion

This research reviews the spectral domain fatigue analysis of Gaussian broadband random process. The well-established and also
ecent spectral methods for fatigue-life estimation are presented in the same theoretical framework. Analogies and differences among
ore than 20 spectral methods are discussed. Based on the 104 defined spectra, the corresponding time-histories are numerically

imulated and the rainflow algorithm is then applied to obtain the reference fatigue life, where three different materials are
onsidered: steel, aluminium and spring steel. The side-by-side comparison of the spectral method is conducted in the sense that
hey perform well, regardless of the response spectrum and material being analyzed.

A group of best-performing methods is selected for each material, which can be applied to a general broadband spectra. If a
otal of 32 loads (all spectra apart those from bimodal spectra category) are evaluated, for small values of the 𝑆−𝑁 curve slope
𝑘=3.324) the majority of the best performing methods (Ortiz-Chen, 𝛼0.75, Tovo-Benasciutti 2, Dirlik, Park, Jun-Park) give fatigue-life
stimates within an acceptable engineering accuracy. The exception to this is the Zhao-Baker method, which is very conservative
20
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in the case of well separated modes. As the fatigue-strength exponent increases (𝑘=7.3), the choice of acceptable spectral methods
s reduced to the Ortiz Chen, 𝛼0.75, Park, Jun-Park and Huang-Moan methods with the relative error being below 25%. Even if the
uang-Moan method is devised for bimodal random processes, it exhibits remarkable accuracy for broadband processes by splitting

he PSD according to the equal variance criterion. For extreme values of 𝑘 (𝑘=11.76) the fatigue-life error is further increased and
he acceptable spectral methods are again Ortiz-Chen, 𝛼0.75, Park, Jun-Park and Huang-Moan with relative errors up to 25%.

A detailed analysis of bimodal spectral methods is performed on the basis of 72 bimodal spectra, where the central frequency
atio 𝛾 and variance ratio 𝛽 were permuted. For small values of the fatigue-strength exponent (𝑘=3.324) the Low’s bimodal method
xhibited best accuracy with a relative error below 5%, even for small values of 𝛾. Another method that performs well is the Low
014 method; however, Low 2014 is limited to 𝛾 ≥ 3. The Jiao-Moan and modified Fu-Cebon methods become sufficiently accurate
ith larger frequency ratio, e.g., for 𝛾=10 the relative error falls below 5%. For higher slope of the 𝑆−𝑁 curve (𝑘=7.3) only the Low
014 method has a relative error below 5%. The accuracy of the Fu-Cebon method is improved as the frequency ratio increases; for
=15 the relative error is below 10% for all the researched materials. Conversely, for the small bandwidth range the Huang-Moan
ethod is considered accurate, e.g., for 𝛾=1.5 the relative error is below 5%, regardless of the analysed material.

This research highlights the applicability of spectral methods for use in vibration fatigue. From the comparison of more than
0 spectral methods, other methods besides well-established ones, such as the Dirlik and Tovo-Benasciutti methods, should be
onsidered when the fatigue load is broadband: the Ortiz-Chen, 𝛼0.75, Park, Jun-Park and Huang-Moan methods. Furthermore, as
he fatigue analysis of bimodal random processes has become well established, the applicability of bimodal methods is inspected.
mong the reviewed spectral methods, Low’s bimodal and the Low 2014 method show exceptional accuracy that can be attained
sing the bimodal formulation.
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ppendix. FLife code example

The following code shows basic vibration-fatigue spectral-analysis workflow using the FLife [70] open-source Python package.

import FLife
import numpy as np

dt = 1e-4
x = np.random.normal(scale=100, size=10000)

C = 1.8e+22 # S-N curve intercept [MPa**k]
k = 7.3 # S-N curve inverse slope [/]

# Spectral data
sd = FLife.SpectralData(input=(x, dt))

# Rainflow reference fatigue life
# (do not be confused here, spectral data object also holds the time domain data)
rf = FLife.Rainflow(sd)

# Spectral methods
dirlik = FLife.Dirlik(sd)
tb = FLife.TovoBenasciutti(sd)
print(f’ Rainflow: {rf.get_life(C = C, k=k):4.0f} s’)
print(f’ Dirlik: {dirlik.get_life(C = C, k=k):4.0f} s’)
print(f’Tovo Benasciutti 2: {tb.get_life(C = C, k=k, method =" method 2") :4.0f} s’)
21
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